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We present the phenomenological analysis of the spectrum of longitudinal spin fluctuations in isotropic
itinerant electron antiferromagnets with account of spin anharmonicity giving rise to coupling of transverse and
longitudinal normal modes. The spectrum consists of a quasielastic part forming a central peak or a dip,
depending on temperature and the Landau relaxation rate. Effects of spin-fluctuation coupling also give rise to
an inelastic part of the spectrum which has a form of resonances or antiresonances near the magnon frequencies
related to nonpropagating longitudinal excitations.
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Essentially, magnetic dynamics in itinerant electron mag-
nets differs from that in the Heisenberg magnets due to the
collective nature of itinerant electrons violating the conser-
vation of magnetic-moment amplitudes and giving rise to
spin fluctuations �SF� which cannot be interpreted in terms of
a simple precession of magnetic moments �see, e.g., Ref. 1�.
Magnetic dynamics and SF in itinerant magnets play a deci-
sive role in many technically important applications includ-
ing Invar alloys,2 colossal magnetoresistive materials,3 high-
temperature superconductors,4 and newly discovered iron
pnictide superconductors.5 Whereas dynamics of transverse
SF in itinerant magnets is well understood theoretically, the
properties of longitudinal SF are still a puzzling point in the
physics of magnetism �for a review see Ref. 6�. Contrary to
dynamics of transverse fluctuations represented by the near-
precession motion of magnetization density, linear dynamics
of longitudinal SF in itinerant ferromagnets is thought to be
dominated by Landau damping in the electron-hole con-
tinuum. Nonlinear effects of the coupling of transverse and
longitudinal SF result in additional channels of magnetic re-
laxation for both transverse and longitudinal SF. In itinerant
ferromagnets, this leads to a novel mechanism of magnon
damping caused by three-mode scattering processes of
emission �absorption� of a longitudinal SF by a magnon,7

and it dominates over all other mechanisms of magnon
damping specific for itinerant magnets.6,8 In both Heisenberg
and itinerant ferromagnets, coupling of longitudinal and
transverse modes essentially affects quasielastic longitudinal
SF and gives rise to inelastic longitudinal SF near the
magnon frequencies,9–11 which is still under debate both
theoretically10–14 and experimentally �see, e.g., Ref. 15�.

Although some experimental evidence for the existence of
quasielastic longitudinal SF of nonlinear origin was pre-
sented by inelastic neutron-scattering measurements,16,17 up
to now, analysis of the mode-mode coupling effects on the
spectrum of longitudinal SF in itinerant antiferromagnets is
still lacking. Computer simulations of magnetic dynamics of
Heisenberg antiferromagnets,14 as well as their analysis in
the critical region in terms of renormalization-group tech-
niques and model dynamical equations,18 however, could
hardly shed light on the problem of longitudinal SF in itin-
erant antiferromagnets outside the critical region.

In this paper, we present the first phenomenological

analysis of the spectrum of longitudinal SF strongly coupled
to the transverse magnetic excitations in isotropic itinerant
antiferromagnets basing on the mode-mode coupling ideas
outside the critical region. Let us now discuss the dynamical
properties of an isotropic itinerant antiferromagnet in terms
of the collective normal variables m��k�, i.e., the amplitudes
of transverse ��= t� and longitudinal ��= l� SF, where k
= �� ,k�, � and k are the frequency and wave vector, respec-
tively, of SF measured from the center of the magnetic Bril-
louin zone. We shall consider SF with relatively long wave-
lengths and low frequencies so that they are not dependent
on the microscopic properties of a magnet and can be de-
scribed within a phenomenological approach based on mode-
mode coupling arguments. Below we consider a phenomeno-
logical model of itinerant antiferromagnets where ordered
state can be described in terms of a single real order param-
eter or staggered magnetization. This model was widely used
to describe itinerant antiferromagnets with a commensurate
spin-density wave or magnetic sublattices.19 Systems with
incommensurate spin-density waves such as Cr and its alloys
cannot be described by this simple model and are not dis-
cussed here.

Then linear magnetic dynamics of transverse SF is domi-
nated by a precession motion characterized by weakly
damped magnons, whereas dynamics of longitudinal SF has
a purely relaxational character defined in the electronic bal-
listic regime by Landau damping in the electron-hole con-
tinuum. Then the transverse �t�k� and longitudinal �l�k� dy-
namical magnetic susceptibilities defining linear magnetic
dynamics of an itinerant antiferromagnet can be taken in the
form19–21

�t�k� = �t�k�
�m

2 �k�
�m

2 �k� − �2 − 2i��−1 �1�

and

�l�k� = �l�k�
�sf�k�

�sf�k� − i�
. �2�

The transverse dynamical susceptibility �Eq. �1�� has poles at
the magnon frequencies �= ��m�k�, where �m

2 �k�=�2

+ �kvm�2, � is the spin-wave gap, vm and �−1�k���m�k� are

PHYSICAL REVIEW B 81, 104403 �2010�

1098-0121/2010/81�10�/104403�7� ©2010 The American Physical Society104403-1

http://dx.doi.org/10.1103/PhysRevB.81.104403


the velocity and inverse lifetime of weakly damped mag-
nons, respectively. The longitudinal susceptibility �Eq. �2��
has a single imaginary pole at the SF frequency �sf�k�
=�0�k��l

−1�k�, where �0�k�=�0�k� is the Landau relaxation
rate of longitudinal SF, and is almost temperature indepen-
dent, with �0�vF�k��P, where vF and �P are the Fermi ve-
locity and Pauli susceptibility, respectively. The static sus-
ceptibilities in Eqs. �1� and �2� have the conventional form
�t,l�k�=�t,l / �1+ �k	t,l�2�, where 	t,l are the transverse and
longitudinal correlation lengths, and �t,l are staggered sus-
ceptibilities. The linear wave-vector dependence of the scat-
tering rate ��0�k�� in itinerant antiferromagnets was recently
confirmed by ab initio calculations of dynamical magnetic
susceptibility in the iron arsenide family22 and is different
from the constraint �0�k�=const�k�,19 which is usually ap-
plied in the SF theory of itinerant antiferromagnets. Here, we
assume that Eqs. �1� and �2� have isotropic wave-vector de-
pendencies. Effects of spatial anisotropy do not principally
change the results presented here �see Ref. 23� and will be
discussed elsewhere. It should be mentioned that to describe
magnetic dynamics of more complicated antiferromagnets
with incommensurate spin-density waves one should account
in Eq. �2� for additional poles related to longitudinal phason
modes predicted for Cr and its alloys in Ref. 24.

We shall now consider mode-mode coupling effects in
isotropic itinerant antiferromagnets. Among them, the most
important ones include three-mode SF interactions, which
were shown to play a dominating role in thermodynamics of
itinerant antiferromagnets outside the critical region.19,23 To
describe them, we shall use the simplest model based on the
effective Ginzburg-Landau �GL� Hamiltonian for isotropic
magnets7,25

Ĥef f = W �
k1+k2=k

ml�k��mt�k1�mt
��− k2� + 3ml�k1�ml�k2�� .

�3�

Here, W=
M is the matrix element, M =M�T� is the stag-
gered magnetization, 
 is the SF coupling constant, and �k

=�k�−�
+��d� /2��. Equation �3� was widely used in the theory

of critical phenomena25 as the simplest model Hamiltonian
where higher-order terms in the order parameter contributing
to the matrix element W are neglected. We shall adopt this
approach and similarly treat Eq. �3� as a model Hamiltonian
which in our description is assumed to be valid down to low
temperatures regardless of the low-temperature value of the
staggered magnetization M. The equations of magnetic dy-
namics are then given by the following �Fourier-
transformed� time-dependent Ginzburg-Landau equations

�t
−1�k�mt�k� = − �

k1+k2=k

Wltt�k,k1,k2�ml�k1�mt�k2� �4�

and

�l
−1�k�ml�k� = − �

k1+k2=k

Wttl�k,k1,k2��mt�k1�mt
��− k2�

+ Wlll�k,k1,k2�ml�k1�ml�k2�� , �5�

where the matrix elements describing SF couplings in the GL
approach are assumed to be constants, Wttl�k ,k1 ,k2�

=Wltt�k ,k1 ,k2� /2=Wlll�k ,k1 ,k2� /3=W=const�k ,k1 ,k2�. Here
the right-hand sides �rhs� describe the effects of three-mode
couplings of SF in isotropic antiferromagnets.

Provided the matrix elements in Eqs. �4� and �5� properly
account for time and spatial dispersions, the equations of
magnetic dynamics have a general form following from the
spin-invariance considerations for isotropic magnets.11 Re-

cently the matrix elements Ŵ were calculated microscopi-
cally within the Fermi-liquid model for itinerant
ferromagnets26 where the GL values for them were con-
firmed for not very short wavelengths when �k	l�2�1, i.e.,
not very close to the magnetic transition. A similar constraint
holds for itinerant antiferromagnets. Below we shall assume
that this inequality is satisfied.

Another limitation of the used here GL approach is related
to the critical region defined by the Ginzburg criterion. Inside
the critical region higher-order mode-mode couplings may
contribute to the longitudinal quasielastic spin-fluctuation
spectra, which we do not account for here.

Equations �1�–�5� define our mode-mode coupling model
we use in this paper to describe longitudinal SF in itinerant
antiferromagnets with account of their coupling to transverse
excitations. In the past, we have used a similar model to
analyze nonlinear effects in the spectrum of transverse and
longitudinal SF of itinerant ferromagnets.6,7,10,11

As it follows from the dynamical Eqs. �4� and �5�, cou-
pling of SF may essentially influence the staggered magnetic
susceptibilities in Eqs. �1� and �2�. In the limit of weak spin
anharmonicity, they should be replaced by7

�t
−1 → �t

−1 + 
�2mt
2 + 3mt

2�,�l
−1 → �l

−1 + 

�

�M
�2mt

2 + 3mt
2�M ,

�6�

where m�
2= 	�k�m��k��2
 are the average squared amplitudes

of SF defining the temperature dependencies of magnetic
susceptibilities which reproduce the well-known result of the
thermodynamical approach to the theory of weakly anhar-
monic SF.19

Most importantly, SF couplings in Eq. �3� open nonlinear
channels of magnetic relaxation due to three-mode scattering
processes, which essentially modify magnetic dynamics.
Here, we shall consider the effects of SF coupling on the
spectrum of longitudinal SF. Besides the renormalization
�Eq. �6�� of magnetic susceptibilities, SF couplings change
the relaxation rate of the longitudinal SF, and should be re-
placed by

1

�0�k�
→

1

��k,T�
=

1

�0�k�
+

1

�n�k,T�
, �7�

where the second term in the rhs describes the nonlinear
contribution to the relaxation rate of longitudinal SF. In the
lowest-order approximation accounting for three-mode cou-
pling of longitudinal SF and magnons, the nonlinear relax-
ation rate in Eq. �7� is given by
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�n
−1�k,T� =

2

�
�
k�

�W�2Im �t�k��Im �t�k + k��

� �N�� − N��+�� , �8�

where N�= �exp�� /kBT�−1�−1. It is necessary to emphasize
that Eq. �8� does not depend on the spectrum of longitudinal
SF and is a functional of the magnon spectrum only.

After substituting the transverse dynamical susceptibility
�Eq. �1�� into Eq. �8�, and assuming weak magnon damping,
we have

�n
−1�k,T� =

�

�
�W�2�

k�
�

�=�1

1

���
��2�m

2

��k + �k���t�k��Im �t�k + �k��

� ���m
2 �k + �k�� − �� + ����2�

��N�� − N��+����=�m�k��. �9�

As it follows from the integrand in the rhs, the frequencies of
the scattered SF should satisfy the conservation laws

�m�k � k�� = �� � �m�k��� �10�

related to four types of scattering processes in isotropic an-
tiferromagnets: emission �absorption� of a longitudinal SF by
a magnon and annihilation �creation� of two magnons giving
rise to a longitudinal SF. It should be mentioned that the
processes of annihilation �creation� of magnons are absent in
ferromagnets where magnons have only one polarization.

Here, we shall assume that the spin-wave gap and inverse
correlation length of transverse SF are small compared to the
maximum frequency �c and wave vector kc of magnons, i.e.,
���c, and �kc	t�2�1, so the following wave-vector depen-
dencies

�t�k� � �t/�k	t�2 � k−2, �m�k� � vm�k� � �k� �11�

hold in the major part of the Brillouin zone. With the use of
Eq. �11�, the integration in Eq. �9� yields the following ex-
plicit expression for the inverse nonlinear relaxation rate

�n
−1�k,T� =

1

�n�k�
��k�

kBT

�
L�k,T� . �12�

Here,

�n
−1 =

2

16�
W2�t

2�k��m�k��k�3 � const�k� �13�

is the relaxation constant which is wave-vector independent,
provided the equalities in Eq. �11� hold, and

L�k,T� = ln� exp−
��m�k,T� + ��

2kBT
� − 1

exp−
��m�k,T� − ��

2kBT
� − 1� . �14�

The function ��k� accounts for the conservation laws result-
ing from Eq. �10�: ��k�=1 for frequencies and wave vectors
satisfying inequalities

− �m�k��2�c − �m�k�� � ��2�c + �� � �m�k��2�c + �m�k��
�15�

and ��k�=0 otherwise. For frequencies ���c, the phase
space �Eq. �15�� reduces to −�1− �k� /2kc��m�k���� �1
+ �k� /2kc��m�k�. In Eq. �14�, we neglected the effects of
weak magnon damping. We take them into account when
necessary below. We shall also consider the spectrum of lon-
gitudinal SF within the phase volume �Eq. �15�� when ��k�
=1 and omit ��k� completely in further calculations.

Let us now discuss the spectrum of longitudinal SF with
account of both mechanisms of magnetic relaxation: the lin-
ear mechanism due to Landau damping and the nonlinear
mechanism caused by scattering of magnons on longitudinal
SF. The spectrum is characterized by the intensity of longi-
tudinal SF

I�k,T� =
1

�
Im �l�k� �16�

and can be directly measured by inelastic neutron scattering.
The longitudinal dynamical susceptibility accounting for
coupling of longitudinal and transverse SF is given by Eqs.
�2�, �6�, �7�, and �12�, and allow us to present the SF spec-
trum �Eq. �16�� in the explicit form

I�k,T� = I0
�m

2 �k��1 + 	�k,T��
�sf

2 �k� + �1 + 	�k,T��2�2 , �17�

where I0=�l�k��sf�k� /�m
2 �k�. We also introduce the dimen-

sionless parameter

	�k,T� =
�0�k�

�n�k,T�
=

kBT

�

�0

�n
L�k,T� �18�

which describes nonlinear effects of mode-mode coupling.
As it follows from Eq. �18�, mode-mode coupling vanishes
in the low-temperature limit. In the absence of coupling �	
=0�, the spectrum of longitudinal SF �Eq. �17�� has a Lorentz
form, and can be drastically altered by nonlinear effects due
to a rather complicated frequency dependence of the cou-
pling parameter 	�k ,T�, as defined by Eq. �18�, which also
gives rise to a strong temperature dependence of the SF spec-
trum.

Here, we briefly discuss the analytical properties of
L�k ,T� and 	�k ,T�. According to Eq. �14�, L�k ,T� is an odd
function of � and L�−k ,T�=−L�k ,T�. In the low-frequency
limit

� � �m�k� , �19�

L�k ,T� increases linearly with the frequency L�k ,T���, and
near the magnon frequencies �� ��m�k�, it diverges loga-
rithmically: L�k ,T�� ln����m�k��. For relatively long
wavelengths

�m�k� � kBT , �20�

the expansion of Eq. �14� in powers of � yields an almost
linear dependence of L�k ,T� on the frequency
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L�k,T� � 2
�

�m�k�1 +
1

3
� �

�m�k��2

+ ¯� . �21�

Near the magnon frequencies, L�k ,T� is approximately given
by

L�k,T� �
1

2
ln� 4�m

2 �k�
��m�k� � ��2 + �−2� , �22�

where we account for weak magnon damping which prevents
L�k ,T� from diverging.

For the coupling parameter �Eq. �18�� in the low-
frequency limit �Eq. �20�� with account of Eq. �21�, we have

	�k,T� = 	0�k,T�1 +
1

3
� �

�m�k��2

+ ¯� , �23�

where the parameter

	0�k,T� = 2
�0

�n

kBT

�m�k�
�24�

does not depend on the frequency and diverges in the long-
wavelength limit as �k�−1.

This parameter is strongly dependent on temperature: it
disappears completely �	0�k ,0�=0� in the low-temperature
limit, increases linearly at temperatures well below the Neel
temperature where the magnon frequencies are almost tem-
perature independent, and diverges �	0�k ,T��1 /�m�k�� as it
approaches the magnetic phase transition. This divergence
occurs provided the magnon frequencies vanish at the phase
transition, as is believed to take place in most magnets. How-
ever, the vicinity of the magnetic transition cannot be de-
scribed within used here GL approach.

Near the magnon frequencies �= ��m�k�, the coupling
parameter �Eq. �17�� has certain logarithmic anomalies

	�k,T� �
1

4
	0 ln� 4�m

2 �k�
��m�k� � ��2 + �−2� , �25�

where 	0=	0�k ,T� as is given by Eq. �24�. This anomalous
behavior of the coupling parameter results in drastic changes
in the spectrum of longitudinal SF due to their coupling with
transverse SF. First, effects of mode-mode coupling modify
quasielastic SF, which are governed by the low-frequency
parameter �Eq. �23�� increase with a rise in temperature. Sec-
ond, due to anomalies of the coupling parameter near the
magnon frequencies �Eq. �25��, coupling of longitudinal and
transverse SF gives rise to novel types of nonpropagating
longitudinal SF near the magnon frequencies.

To analyze the spectrum of quasielastic SF, we expand the
intensity �Eq. �17�� in powers of �, and taking into account
Eq. �23�, we end up with

I�k,T�

� I0
1

�2�k�1+ 	0 +
�2

�m
2 �k�� 	0

3
−

1

�2�k�
�1 + 	0�3� + ¯� .

�26�

Here, ��k�=�sf�k� /�m�k� is a dimensionless parameter
nearly independent of the wave vector in the long-

wavelength limit. The sign of the coefficient in the term ��2

in the rhs of Eq. �26� characterizes the type of quasielastic
SF. For

3
�1 + 	0�k,T��3

	0�k,T�
� �2�k� , �27�

the coefficient in the ��2 term in Eq. �26� is negative, and is
related to a quasielastic peak in the SF spectrum. When the
inequality �Eq. �27�� is violated

3
�1 + 	0�k,T��3

	0�k,T�
� �2�k� , �28�

quasielastic SF are characterized by a dip at �=0, which
separates inelastic satellites near the magnon frequencies. As
it follows from Eq. �27�, the dip does not appear when

��k� � 9/2. �29�

According to Eq. �17�, the spectrum of longitudinal SF
takes the simple Lorentz form describing a central quasielas-
tic peak in the limits of weak and strong mode-mode cou-
pling. For weak mode-mode coupling �i.e., at low tempera-
tures�, where

	0�k,T� � 1, �30�

the spectrum of longitudinal SF �Eq. �17�� has the conven-
tional form

I�k,T� = �l�k�
�sf�k�

�sf
2 �k� + �2 , �31�

and describes a quasielastic peak of a linear nature with the
half width at half maximum �HWHM�,

��k� = �sf�k� � �k� , �32�

which is linearly dependent on the wave vector in the long-
wavelength limit ��	lk�2�1� due to Landau damping. With
an increase in temperature, the coupling parameter �Eq. �24��
increases, and in the strong-coupling limit where

	0�k,T� � 1, �33�

as it follows from Eq. �17�, the spectrum of longitudinal SF
has the Lorentz form again, but of a purely nonlinear nature

I�k,T� = �l�k�
�sf�k�/	0�k,T�

��sf�k�/	0�k,T��2 + �2 . �34�

Following from Eq. �33�, the nonlinear quasielastic peak in
Eq. �34� has the intensity I�k ,T��=0��l�k�T /�m�k��sf�k�,
which increases rapidly with a rise in temperature. The
HWHM,

��k� = �sf�k�/	0�k,T� � �m�k��sf�k�/T � k2 �35�

of the nonlinear peak described by Eq. �34� has a quadratic
wave-vector dependence in the long-wavelength limit
��	lk�2�1�, and is in contrast to the linear dependence in Eq.
�31� characterizing the width of the linear peak. This may be
a clue for separating linear versus nonlinear quasielastic SF
in neutron-scattering investigations of various antiferromag-
netic systems.
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The evolution from linear to nonlinear quasielastic peaks
described by Eqs. �31� and �34� with an increase in mode-
mode coupling and temperature can take place according to
two different scenarios depending on the ratio ��k�
=�sf�k� /�m�k�. The first scenario is realized in itinerant an-
tiferromagnets satisfying the inequality in Eq. �29�, where
the width of the linear quasielastic peak �sf�k� is less or
comparable to the magnon frequency. Therefore, quasielastic
longitudinal SF at low temperatures where nonlinear effects
are negligible are well resolved from the transverse propa-
gating magnons. In this scenario, the linear quasielastic peak
arising at low temperatures gradually transforms into the
high-temperature nonlinear peak.

Another scenario describing the temperature dependence
of the spectrum of quasielastic SF is realized in itinerant
antiferromagnets with

��k� � 9/2, �36�

where the width of the linear quasielastic peak �sf�k� is
larger than the magnon frequency, and therefore, quasielastic
longitudinal SF at low temperatures are merged with trans-
verse propagating magnons. As temperature rises, the low-
temperature linear regime of SF characterized by the quasi-
elastic Lorentz peak given by Eq. �31� is changed by a dip
developing at �=0 in the temperature range defined by Eq.
�28�. When the rising temperature eventually exceeds the
range defined by Eq. �28�, the dip transforms into a quasi-
elastic peak �Eq. �34�� of a purely nonlinear origin. The latter
scenario of the temperature-dependent behavior of SF there-
fore differs from the former one due to the development of a
quasielastic dip in the intermediate temperature range given
by Eq. �28�.

Besides quasielastic SF, coupling of longitudinal and
transverse modes results in inelastic longitudinal SF devel-
oping near the magnon frequencies �= ��m�k�. According
to Eqs. �17�, �18�, and �22� at finite temperatures, two satel-
lite peaks arise, and their intensity increases rapidly with a
rise in temperature. To compare intensities of the inelastic
and quasielastic peaks, one should estimate the ratio

I�k,T��=0

I�k,T��=�m�k�
=

1 + 	0

1 + 	m
�1 +

�m
2 �k�

�sf
2 �k�

�1 + 	m�2� , �37�

where 	m=	�k ,T��=�m�k���	0 /2�ln�2�m�k���. As tempera-
ture and SF coupling �Eq. �24�� rise in antiferromagnets sat-
isfying the constraint of Eq. �29�, the intensity of the quasi-
elastic peak increases monotonically when compared to the
inelastic peaks, according to Eq. �37�. This is accompanied
by a gradual change in the nature of the quasielastic peak
from linear to a nonlinear one. In these antiferromagnets,
quasielastic peaks dominate over inelastic ones over the en-
tire temperature range below the Neel temperature.

In antiferromagnets where Eq. �36� holds, the intensity
of inelastic peaks increases with a rise in temperature,
and they dominate over the central quasielastic peak.
At temperatures defined by 	0�k ,T��1 /3�2�k�, the quasi-
elastic peak transfers into a dip between the inelastic peaks
at �= ��m�k�. As temperature continues to rise until the

parameter 	0�k ,T���2�k� /�3, the dip vice versa transforms
into a quasielastic peak of a purely nonlinear origin.

The inelastic part of the spectrum of longitudinal SF re-
sulting from resonances of the rhs of Eq. �17� near the mag-
non frequencies can have a fine structure. As temperature and
SF coupling rise, each of the inelastic resonances developing
near �= ��m�k� grows in intensity, and at temperatures de-
fined by

	m�k,T� � ��k,T� , �38�

they are transformed into antiresonances accompanied by
two satellite peaks. This fine structure of the inelastic spec-
trum of SF arising at temperatures satisfying Eq. �38� exists
up to the Neel temperature.

Now we can summarize the analysis of the temperature
dependencies of the quasielastic and inelastic parts of the
spectrum of longitudinal SF caused by coupling of longitu-
dinal and transverse SF. The first scenario takes place in
itinerant antiferromagnets with low � satisfying Eq. �29�. In
the low-temperature limit where SF coupling satisfies Eq.
�30�, the spectrum of longitudinal SF has a relatively narrow
quasielastic peak related to linear paramagnonlike excita-
tions arising due to the Landau damping, and its width �Eq.
�32�� is linearly dependent on the wave vector. Coupling to
the transverse SF gives rise to two inelastic resonances at the
magnon frequencies �= ��m�k�, and are well separated
from the quasielastic peak due to the inequality in Eq. �29�.
When temperature rises, the intensity of the resonances
grows due to the increase in SF coupling, and at tempera-
tures defined by Eq. �38�, the resonances are converted into
antiresonances accompanied by two satellites each. Up to
this temperature, the spectrum of longitudinal SF generally
has a three-peak structure consisting of a central quasielastic
peak and two inelastic peaks near the magnon frequencies
with the following fine structure: antiresonances at �
= ��m�k� with two satellite each. As the temperature rises
even higher, the intensity of the central quasielastic peak
grows faster than the inelastic ones, and it dominates over
them. At high temperatures where SF coupling �Eq. �33�� is
strong, the spectrum of longitudinal SF has a purely nonlin-
ear nature, and its shape is formed by a central peak domi-
nating over antiresonances. The width of the central peak
�Eq. �35�� depends quadratically on the wave vector �in con-
trast to the linear dependence at low temperatures�.

Another, more complicated scenario takes place in itiner-
ant antiferromagnets with relatively high � satisfying Eq.
�36�, where at low temperatures, the spectrum consists of a
broad quasielastic peak due to Landau damping with rela-
tively narrow inelastic resonances at the magnon frequencies
superimposed on the central peak. Unlike the first scenario,
where both the central peak and inelastic resonances grew
with rises in temperature, the increase in resonances is more
pronounced here, and at temperatures defined by Eq. �28�,
the central peak separating the inelastic resonances trans-
forms into a dip. With a further rise in temperature, the in-
tensity of inelastic SF increases while the resonances are
transformed into antiresonances. At the relatively high tem-
peratures defined by Eq. �27�, the central dip transforms back
into a peak and grows rapidly with increases in temperature
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until it dominates over the antiresonances. Further develop-
ment of the SF spectrum takes place in accordance with the
first scenario discussed above. The scenarios for the tempera-
ture dependence of the spectrum of longitudinal SF in itin-
erant antiferromagnets defined by Eqs. �29� and �36� are il-
lustrated by Fig. 1, and show the evolution of the spectrum
of longitudinal SF calculated from Eq. �17� with the varia-
tion in temperature and �or� spin anharmonicity.

Direct experimental evidence for existing quasielastic lon-
gitudinal SF has been presented16 for the cubic isotropic an-
tiferromagnet RbMnF3 with the Neel temperature 83 K using
inelastic neutron-scattering data together with the polariza-
tion analysis. The authors discovered a quasielastic compo-
nent of the spectrum with longitudinal polarization which
had the shape of a central peak increasing rapidly while ap-
proaching the Neel temperature and decreasing with the in-
crease in the wave vector. The behavior of this central lon-
gitudinal peak clearly indicates its nonlinear nature and can
be well described using the quasielastic spectrum �Eq. �34��.

Quasielastic longitudinal SF have been also observed17 in
the isotropic itinerant antiferromagnet UN with the Neel
temperature 53 K using inelastic neutron scattering. The in-
tensity of the peaks of quasielastic SF was shown to increase
rapidly with a rise in temperature and presented direct evi-
dence for nonlinear nature of longitudinal SF observed in
UN.

Perspective candidates for the observation of nonlinear
effects of SF coupling are the iron pnictide itinerant antifer-
romagnets, and are parent compounds for the recently dis-
covered superconductors.5 They possess high-frequency
magnons with the energies up to 100 meV,5,22 which accord-
ing to Eq. �13�, may give rise to strong nonlinear magnetic
relaxation affecting the spectrum of longitudinal SF. Besides,
inelastic neutron-scattering measurements of antiferromag-
netic iron pnictides22 discovered the presence of significant
Landau damping, ultimate manifestation of the electron itin-
erancy. In addition, our density-functional calculations also
revealed strong Landau damping of magnons22 and compa-
rable values of transverse and longitudinal components of
the static magnetic susceptibility,27,28 which strongly sup-
ports their itinerant character. All these findings make iron
pnictides an ideal system for the application of the approach
described above.

In summary, we presented the first analysis of the spec-
trum of longitudinal SF in itinerant electron antiferromagnets
taking into account coupling of longitudinal and transverse
SF. At moderate temperatures, SF coupling essentially affects
quasielastic SF and gives rise to inelastic nonpropagating
longitudinal excitations near the magnon energies. At higher
temperatures, the spectrum of longitudinal SF is dominated
by a rapidly growing quasielastic central peak of a nonlinear
nature. Our results form the basis for the understanding of
longitudinal SF in itinerant antiferromagnets at finite tem-
peratures, when spin anharmonicity may play an important
role mixing normal longitudinal and transverse modes.

It should be also emphasized that the presented here re-
sults open a new fundamental problem of itinerant magne-
tism. Namely, up to now it was thought that SF thermody-
namics in itinerant magnets is well described by the self-
consistent renormalized �SCR� theory of Moriya19 in the

weak-coupling limit and by soft mode �SM� theory of So-
lontsov and Wagner,6,23 both assuming that SF are caused by
the linear �Landau� mechanism of magnetic relaxation. On

1

2

3

4

1

2
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4

(a)

(b)

FIG. 1. �Color online� Spectrum of longitudinal SF as a function
of temperature t=kBT /�m�k� and coupling parameter 	0�k ,T�, cal-
culated from Eq. �17� for �m�k��=0.001 and �0 /�n=10. Curves 1
�blue�, 2 �dirty yellow�, 3 �red�, and 4 �green� are calculated for t
=0.05 �	0=1.0�, t=0.2 �	0=4.0�, t=0.3 �	0=6.0�, and t=0.5 �	0

=10.0�. �a� Temperature evolution of the spectrum in the scenario
characterized by Eq. �29� with �sf

2 �k� /�m
2 �k�=10. The intensity of

the central quasielastic peak increases rapidly with the increase in
temperature and spin anharmonicity, accompanied by resonances
�curve 1�, or antiresonances �curves 2, 3, and 4� related to non-
propagating longitudinal spin fluctuations near the magnon frequen-
cies �= ��m�k�. �b� Temperature dependence of the spectrum in
the scenario defined by Eq. �36� with �sf

2 �k� /�m
2 �k�=30. With the

increase in temperature the wide central peak �curve 1� transforms
into a dip �curve 2�, which transforms back into a central peak
�curve 3� and grows in intensity �curves 4�. Quasielastic spin fluc-
tuations are surrounded by resonances �curve 1� or antiresonances
�curves 2, 3, and 4� characterizing nonpropagating longitudinal spin
fluctuations developing near �= ��m�k�.
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the other hand, the presented above results clearly show that
at elevated temperatures SF may be caused by a nonlinear
mechanism of magnetic relaxation resulting in a more com-
plicated spectrum of longitudinal SF. This finding should
lead to a reexamination of the results of the SCR and SM
theories of SF.
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